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FLAP/LAC/TORSION DYNAMICS OF A UNIFORM,

CANTILEVER MOTOR BLADE IN HOVER

Wayne Johnson*

Ames Research Center
and

Ames Directorate, USAAMRDL
a

SUMMARY

The dynamic stability of the flap/lag/torsion motion of a uniform,

cantilever rotor blade in hover is calculated. The influence of blade

collective pitch # lag frequeocy, torsional flexibility, structural coupling,

and precone angle on the stability is examined. Good agreement is found
	

r

with the results of an independent analytical investigation.
A

A

INTRODUCTION

A comprehensive aeroelastic analysis for rotorcraft was developed

in reference d. This report presents the results of an application of that
analysis to the case of a uniform, cantilever rotor blade in hover. A

similar investigation of hingeless rotor flap/lag/torsion dynamics is given

in reference 2. The purpose of the present investigation is to verify that

these two independent analyses are consistent representations of the physical

behavior of a rotor blade.

ARALITIUAL RUINIJ

The case considered is a single, independent rotor blade in hover.

The blade has cantilever root restraint with uniform inertial and structural

properties. The blade is assumed to have no twist; no hub offset # droop,

or sweep; no kinematic pitch/bonding _ coupling; no lag damper or structural.

*Research Scientist, Large Scale Aerodynamics Branch, NASA-Ames Research Center
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}	 damping = and no chordwise offset of the center of gravity, aerodynamic center,

or tension center from the elastic axis. The influence of precone is

Investigated for some cases. The aerodynamic model for this investigation

neglects the effects of compressibility, stall, tip loss, and root cutout.

Uniform ideal induced velocity is used, calculated from momentum theory for

the thrust of the g inglee blade. See referenQo 1 for a detailed description

of the manner in which these parameters are incorporated in the analysise

It is assumed that the rotor blade has a Lock number X - 5 (based

can the characteristic inertia I  = mR 3/3 1 where m is the section mass and

R the blade radius). The blade chord-to-radius ratio is c/R - 0.078540

corresponding to a solidity of v- .. 0.025 for this single blade, The blade

torsional radius of gyration is k b ,: (IB/m)1. 0,025R . The blade section
aerodynamics are defined, by the lift curve slope c - 5.7, and the profile

drag coefficient cd 0.009, The static pitch moment about the aerodynamic

center is zero, cmac = 0.

The blade bending and torsional stiffnesses are adjusted to achieve

the desired natural frequencies. The rotating natural frequency of the

flap motion is	 1.15 (per rev) for all cases. The rotating natural

frequency of the lag motion is a major parameter of the investigation, with

special attention to the cases ^ S a 0. 7 and JS 1.5 (typical soft-inplane

and stiff-inplane rotors). The blade structural coupling is defined by the

parameter 6Z , such that when the blade aerodynamic pitch is B , the pitch

of thestructural principal axes is 	 6 a For	 ,	 0 there is no

structural coupling, so the blade bending modes are purely inplane or purely

out-of-plane. For	 .	 1 there is full structural coupling of the flap

and lag bending motion. The case of infinite torsional stiffness is examined,

as well as the case of a torsionally flexible blade. The torsional natural

frequency is W+ ( per rev) .

The analysis considers three degrees of freedom: the fundamental flap,

lag, and tors.on modes, Infinite control system stiffness is assumed, so

there is no rigid pitch motion of the blade about the pitch bearing. For

}
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the case of infinite blade torsional stiffness the problem reduces to two

degrees of freedom, flap and lag bending.

RESULTS AND DISCUSSION

!Figures 1 to 3 show the trim conditions calculated for this rotor

blade in hovers the thrust coefficient to solidity ratio, the coning

angle, and the lag angle as a function of blade collective pitch. The

very high values of CT/v-	 are possible because stall has been neglected.

The lag deflection is determined by the balance of the relatively small

inplane forces, hence is more sensitive to the structural coupling than is

the trim coning angle. Figure 4 gives the blade bending frequencies as

a function of the structural pitch angle, for a soft-inplane blade (^s - 0.7

at AS = 0) and a stiff-inplane blade ( JS 1.5 at R6 - 0). Figure 5
shows the corresponding tip deflections of the flap and lag modes. The

soft-nplane rotor has relatively close flap and lag bending stiffnesses,

and so exhibits little coupling of the inplane and out-of -plane motions

as SL9 increases.

Figures 6 and 7 present the calculated dynamic stability of a

torsionally rigid blade. For certain combinations of lag frequency and

structural couplingp a flap/lag instability is encountered if the blade
pitch is high enough. The stability boundary is given in terms of the

critical collective pitch angle, ecrit. The stiff
-inplane rotors are much

more sensitive to the structural coupling than are the soft -inplane rotors.

Figure 8 presents the calculated stability boundaries for a blade

with torsional natural frequency W+Q 5. Comparing with figure 7, it is

seen that torsional flexlbil ty is generally destabilizing for small

structural coupling, buf, stabilizing for large structural coupling. Figures

9 and 10 show the influence of precone angle Rp on the calculated stabinty
boundaries, for soft-inplane and stiff -inplane torsionally flexible blades.

Finally, figure It gives the lag mode damping ratio as a function of lag

frequency and struc tural coupling, for	 R 5.
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6
A similar, but completely independent analysis of rotor blade

flap/lag/torsion dynamic stability is given in reference 2, In that work
an analysis limited to a singlo uniform, cantilever blade is used in an

extensive investigation of the fundamental dynamic characteristics of

hingeless rotors. 'there is good agreement between the present calculations
and those of reference 2 (compare the present figures 6 to 11 with respectively

figures 19, 22 0 29, 34, 36, and 42 of reference 2). 'r;1ere are some
numerical differences between the two calculations. For example, in

figure ? the stability boundary minimum is at aboute
crit 90'while

figure 22 of reference 2 gives about

	

	 a le, a difference probablycrit
attributable to the use here of the induced velocity of a single-bladed rotor

rather than a four-bladed rotor as in reference 2. In general character

the results of these two independent analyses are identical, indicating
that they are consistent representations of the physical behavior of a

rotor blade

CONCLUSION

The flap/lag/torsion stability of a uniform, cantilever rotor blade

in hover has been examined. Good agreement was found with the results of

an independent analytical investigation. Thus applications of the

aeroelastic analysis developed in reference 1 to general rotors and rotorcraft

configurations are supported by the basic studies of blade flap/lag/torsion

dynamics in reference 2.
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Figure 	 Blade bending natural frequencies for soft-inplane and stiff-inplane

cases, as a function of the structural pitch angle (^^
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precone), with various values of structural coupling.
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FFigure 10 Stability boundaries as a function of precone angle ( for a

stiff-inplane torsionally flexible blade (^^ 1,15, JS -- 1.5,

and w a 5), with various values of structural coupling.
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Figure 11 Lag mode damping ratio as a function of lag frequency 	 - 1.150
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